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Abstract
The main objective of this paper is the numerical investigation of the process of
thermomagnetic convection of a special temperature sensitive ferrofluid. The fluid is studied in
a cylindrical domain, with constant temperatures on the top and bottom ends and adiabatic
boundary conditions on the sidewalls. The thermomagnetic convection is generated by a
non-uniform constant magnetic field of a solenoid, which is placed in a hollow area inside the
domain. It has been found that the efficiency of convective heat transfer in such a set-up can be
increased up to sevenfold by magnetic field within the studied range of parameters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The effect of thermomagnetic convection in ferrofluids
shows promising possibilities for applications, particularly
in miniature cooling devices for electronics and in low-
gravity environments where natural convection fails to provide
adequate heat transfer. A number of previous theoretical and
experimental studies (some of recent results— [1, 2, 4, 5]) have
shown that under certain conditions non-uniform magnetic
fields facilitate heat transfer in ferrofluids. Thermosyphon-
type cooling devices based on this effect could be self-
regulating, self-sustaining and considerably smaller than active
set-ups. Our aim is to numerically study the thermomagnetic
convection in a simplified cylindrical set-up and determine the
achievable efficiency of heat transfer in a thermosyphon-type
device.

2. Modelled system and equations

2.1. Modelled domain

The modelled geometry (figure 1) is a 3D cylindrical enclosure
with height/radius aspect ratio equal to three. The solenoid
is positioned coaxially inside the enclosure. It has inner and
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Figure 1. Geometry of the problem: (a) cylindrical enclosure with
coaxially positioned solenoid, (b) 2D computational domain.

outer radii equal to one-half and three-quarters of the cylinder
radius. The height of the solenoid is five-sixths of the cylinder
height. The geometry and boundary conditions are axially
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symmetric, which allows us to reduce the problem to 2D. The
modelled domain, therefore, consists of a rectangular region,
which includes half of the cylinder’s axial cross-section.

2.2. Governing equations

The magnetic fields in question are sufficiently strong to be
considered constant and all perturbations due to the fluid
motion can be neglected. The field produced by the solenoid
can thus be determined using the vector potential formulation
of the magnetostatics equations

∇ ×
(

1

μ
∇ × A

)
= J. (1)

The flow of the magnetic fluid is governed by the Navier–
Stokes equation with buoyancy and Kelvin’s body force
terms, continuity equation, temperature equation and equations
of state. Utilizing the Boussinesq approximation they are
respectively

ρ

(
∂V
∂ t

+ (V∇) V
)

= −∇ P + η�V + ρg + M∇B, (2)

∇V = 0, (3)

∂T

∂ t
+ V∇T = χ�T, (4)

ρ = ρ0 (1 − βT ) , M = M0 (1 − K�) . (5)

Linear dependences have been chosen to approximate the
temperature dependence of density and magnetic moment (5).
The potential parts of magnetic and gravity force have
been included in the pressure gradient [2]. Introducing
the dimensionless parameters Ra—Rayleigh number, Rm—
magnetic Rayleigh number—and Pr—Prandtl number—
allows us to write the equations in the more compact
dimensionless form. Due to the 2D nature of the flow, the
problem can also be further simplified, by transforming the
equations to the vorticity-stream function formulation [3]

∂ω

∂τ
+ (v∇)ω = Pr�ω − Ra Pr∇ × (θg)

− Rm Pr∇ × (θm∇b) , (6)

�ψ = −ω, (7)
∂θ

∂τ
+ (v∇)θ = �θ. (8)

In the 2D case the only non-zero components of the vector
potential, stream function and vorticity vectors are those
normal to the axial cross-section. The appropriate boundary
conditions for the problem include zero vector potential on
the symmetry axis and a mixed type boundary condition
on the outer surface representing the solenoid in the dipole
approximation. The stream function has been set to zero on
all the outer boundaries and the symmetry axis. In order to
obtain the value of the stream function on the inner boundary
(the surface of the solenoid) the Navier–Stokes equation in the
pressure–velocity formulation has been explicitly integrated
across that boundary. The velocity is zero because of the
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Figure 2. (a) Magnetic field configuration produced in the cylinder
by a solenoid; (b) interpolation of ∇B2, representing the areas of
maximum magnetic pressure.

imposed non-slip boundary conditions and an integral over a
closed contour of tangential pressure gradient is also zero

0 =
∮

(∇ × ω + Raθg + Rmθ (m∇) b) . (9)

This equation is then added to the system. The condition
ω = 0 is set on the symmetry axis, no-slip boundary conditions
for vorticity have been imposed on the outer boundary and
the surface of the solenoid [3]. Zero-flux conditions for
temperature are set on the outer sidewall of the domain and
on the symmetry axis. Constant temperatures are defined on
the upper and lower ends of the cylinder. The surface of the
solenoid is thermally isolated.

This set of equations (6)–(9) and the boundary conditions
have been written in the finite difference (FD) formulation
using the upwind scheme for the advection term. The resulting
linear system has been solved numerically on a non-uniform
non-staggered grid by an iterative Bi-CG solver.

3. Results and discussion

Initially, a series of calculations was performed to study the
distribution of the magnetic field and magnetic force acting
on the ferrofluid for different configurations of the solenoid
and the enclosure. A typical distribution of the computed
magnetic field is shown in figure 2(a) and the corresponding
interpolation of ∇B2, which governs the magnetic force acting
on the ferrofluid, is given in figure 2(b). An appropriate
geometry of the domain and the solenoid was then chosen in
order to position the areas where the fluid is cooled or heated
(top and bottom surfaces of the enclosure) inside the magnetic
field.

Assuming the distribution of the magnetic field as a
constant parameter, transient development of the stream
function, vorticity and temperature fields has been calculated
for a range of Rayleigh and magnetic Rayleigh numbers. The
parameters used in the calculations are summarized in table 1.
The Prandtl number in this case is 10 and Rm and Ra can
be adjusted, changing accordingly the magnetic field and the
temperature gradient. Of main interest were the stationary
cases, which developed when the dimensionless time
approached unity. First, a series of calculations was performed
to study the ferrofluid flow at zero magnetic Rayleigh number
(Rm = 0), which corresponds to pure thermal convection,
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Figure 3. Stream function contours for Ra = 104 and different values of Rm/Ra: (a) Rm/Ra = 0, (b) Rm/Ra = 2.5, (c) Rm/Ra = 40,
(d) Rm/Ra = 100, (e) Rm/Ra = 200, (f) Rm/Ra = 1000. The applied temperature gradient is oriented downwards, ∇T ↓.

(a) (b) (c) (d) (e) (f)

Figure 4. Temperature distribution contours for Ra = 104 and different values of Rm/Ra: (a) Rm/Ra = 0, (b) Rm/Ra = 2.5,
(c) Rm/Ra = 40, (d) Rm/Ra = 100, (e) Rm/Ra = 200, (f) Rm/Ra = 1000. The applied temperature gradient is oriented downwards,
∇T ↓.

Table 1. Parameters related to the magnetic fluid in question.

Parameter Value

Viscosity, η 10−3 kg m−1 s−1

Density, ρ 103 kg m−3

Thermal diffusivity, κ 10−7 m2 s−1

Thermal expansivity, β 5 × 10−4 K−1

Concentration, φ 0.02
Saturation magnetization, MS 5 × 106 A m−1

Pyromagnetic coefficient, K 5 × 10−3 K−1

Particle radius, r 5 nm

varying only the temperature difference between the upper and
lower borders of the domain. The temperature gradient was
directed downwards in this case. The structure of the resulting
flow includes an upgoing warm stream due to buoyancy
inside the inactive solenoid and downgoing cold flow at the
outer areas. A contour plot of the corresponding typical
stream function is shown in figure 3(a) and the temperature
distribution in figure 4(a) for a particular case of Ra = 104.
The Rayleigh number was varied in a broad interval between
103 and 107. At Rayleigh numbers higher than 107 the
flow exhibits undamped transient pulsations, which become
turbulent, further increasing Ra. To study the influence of the
magnetic field on convection we changed the relation Rm/Ra
for different Rayleigh numbers. The presence of a sufficiently
strong magnetic field (when Rm becomes comparable with
Ra) changes the structure of the flow. The area inside the
solenoid in this case is occupied by the downgoing cold
fluid, pulled by the magnetic field. The temperature profiles
are shown in figures 4(b)–(f) and the corresponding stream
function contour plots are given in figures 3(b)–(f) for the case
of Ra = 104. Increasing the strength of the magnetic field,

new circulation areas appear at the lower end of the solenoid,
inside the solenoid and at the top end.

The effects of thermomagnetic convection on the heat
transfer have been characterized by the relative Nusselt number
(normalized by the Nusselt number in case of pure thermal
convection for the same Rayleigh number) in each case. The
time development curves of this quantity for a single case of
Ra = 2 × 105 and multiple values of the factor Rm/Ra are
shown in figure 5. Stationary states have been achieved in all
cases. The dependence of the relative Nusselt number on the
factor Rm/Ra for various values of the Rayleigh number are
shown in figure 6. The curves have a sharp bend at Rm/Ra ≈
10, which corresponds to an instability similar to the Rayleigh
instability.

The results show that heat transfer in the case of
thermomagnetic convection can be up to seven times more
efficient than in the case of pure natural convection. The
dependence on figure 6 agrees well with the scaling analysis by
Mukhopadhyay et al [4], although it has been performed for a
slightly different system. The region at higher magnetic fields
can be approximated by a power-law, with the exponent ≈0.3.

Another interesting case is when the temperature gradient
is oriented upwards and the thermomagnetic convection is
not aided by buoyancy. A series of calculations for different
Ra and Rm/Ra values has been performed to study this
situation. Variation of Rm/Ra for a selected value of the
Rayleigh number (Ra = 104) is represented in figure 7. The
central area is occupied by an upgoing cold stream, pulled
inside the solenoid by the magnetic field. The corresponding
temperature distribution is given in figure 8. The efficiency of
the heat transfer in this case is also characterized by the relative
Nusselt number. Its dependence on Rm/Ra for the values of
Ra in the interval between 2 × 102 and 106 is represented
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Figure 5. Time development of convective heat transfer. ∇T ↓.

Figure 6. Efficiency of convective heat transfer due to thermomagnetic convection for different values of the Rayleigh number and magnetic
field strength. The applied temperature gradient is oriented downwards, ∇T ↓.

(a) (b) (c) (d) (e) (f) (g)

Figure 7. Stream function contours for Ra = 104 and different values of Rm/Ra: (a) Rm/Ra = 10, (b) Rm/Ra = 20, (c) Rm/Ra = 30,
(d) Rm/Ra = 50, (e) Rm/Ra = 100, (f) Rm/Ra = 500, (g) Rm/Ra = 1000. The applied temperature gradient is oriented upwards, ∇T ↑.

in figure 9. At the lower values of Rm/Ra the buoyancy
effectively cancels the thermomagnetic convection. Further
increasing the magnetic field, the thermomagnetic convection
then becomes dominant. At higher values of Rm/Ra, within
the region which interests us most, the efficiency of the heat
transfer is approximately the same as in the case of downwards
directed temperature gradient. The region where the buoyancy
plays an important role is relatively narrow, which insures that
the convection efficiency is orientation independent, unlike for
the classical thermosyphons.

4. Conclusions

(i) The performed numerical calculations using the simplified
set-up have shown that the efficiency of the convective
heat transfer can be augmented greatly by the magnetic
field. The on-axis velocity of the flow easily reaches
1 cm s−1 within the studied range of parameters for a
thermosyphon with dimensions 2 cm × 6 cm.

(ii) The acquired data show promising possibilities for the
experimental realization of the set-up, currently being
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Figure 8. Temperature distribution contours for Ra = 104 and different values of Rm/Ra: (a) Rm/Ra = 10, (b) Rm/Ra = 20,
(c) Rm/Ra = 30, (d) Rm/Ra = 50, (e) Rm/Ra = 100, (f) Rm/Ra = 500, (g) Rm/Ra = 1000. The applied temperature gradient is
oriented upwards, ∇T ↑.

Figure 9. Efficiency of the convective heat transfer due to the thermomagnetic convection for different values of the Rayleigh number and
magnetic field strength. The applied temperature gradient is oriented upwards, ∇T ↑.

prepared. A solenoid, however, is very impractical for the
purpose of generating a sufficiently strong magnetic field.
Therefore, permanent magnets with saturation field 1.5 T
will be used to provide the appropriate magnetic pressure.
The distribution of the magnetic force will effectively be
the same as studied here.
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